
RuntimeVerification

Klaus Havelund

Kestrel Technology
NASA Ames Research Center

California, USA

2

Where am I Sitting?
NASA
• JPL, California, Los Angeles: unmanned deep space
• Houston, Texas: manned missions
• Kennedy, Florida: launches
• ….
• NASA Ames, California, Mountain View:

Computer Science:
• Computational Sciences Division: 300-400 researchers

• Automated Software Engineering Group
• Verification and Testing: 10 people
• Program Synthesis: 10 people

• Planning and Scheduling
• …

• Super computing
• …

3

Contributers of Here
Presented Work

Cyrille Artho (ETH, Zurich, CH)
Howard Barringer (U. Manchester, UK)
Saddek Bensalem (Verimag, Grenoble, F)
Allen Goldberg(KT/NASA Ames, USA)
Klaus Havelund (KT/NASA Ames, USA)
Koushik Sen (Univ. Illinois, USA)

4

5

NASA Increasingly
Relies on Software

Systems must support remote
exploration
Systems must be more autonomous
Systems must do more complex tasks

When people think of space, they think of rocket
plumes and the Space Shuttle, but the future of
space is information technology…

Daniel S. Goldin,
Previous NASA Administrator

Not only HW

6

We get excited
when it goes well

7

However,
errors sometimes occur

8

Ariane 5, 1996 - Lost

9

Ariane:
Float to Integer conversion

Data conversion of a too large number. 64 bit floating point
number relating to the horizontal velocity of the rocket with
respect to the platform was converted to a 16 bit signed
integer. Number was larger than 65,536.
Due to higher horizontal velocity than in Ariane 4.

10

Mars PathFinder, 1997

11

Mars PathFinder:
Priority Inversion Problem

Bus Manager

Meteorological
Data gathering

task

High Priority

Low Priority

Medium Priority

Some task

1

2
3

waiting
daemon reset

12

Mars Climate Orbiter, 1999

13

Mars Climate Orbiter:
Unit error

214

Pounds, inches, …

Kilos, centimeters

“We had planned to approach
the planet at an altitude of
about 150 kilometers (93
miles). We thought we were
doing that, but upon review of
the last six to eight hours of
data leading up to arrival, we
saw indications that the actual
approach altitude had been
much lower. It appears that the
actual altitude was about 60
kilometers (37 miles)”.

14

Deep Space 1, 1999

15

Deep-Space 1

while(true){
action();
if(!newEvents())

wait();
handleEvents();

}

New event

16

Deep-Space1:
We found error before flight

Using the SPIN model checker
In spacecraft operating system
Code was corrected, but error later re-
introduced in a different sub-system
Error was located after 5 hours
Was not fixed since modifying code could
cause new errors, and …
it was not likely to re-occur
Shows how hard these errors are to find.

17

Mars Polar Lander, 1999

18

Mars Polar Lander:
Landing Sensor
activated too early

Normally, the shake of a touch down would
signal that engines should be shut down.
However, shake of legs opening could cause
the same effect in some cases. It was known.
System was designed to ignore such shakes
above 40 feet where legs were to open.
System above 40 feet correctly ignored
landed-flag, but flag was not reset to false, and
triggered engine shut-off as soon as 40 feet
were reached.

19

Mars Polar Lander:
Imagined Scenario

2

1

8 7

6

3

5 4

sensor
legs
engine

high

medium

low

landed

40 feet ~
13 meters

20

Spirit Mars Rover, 2004

21

Spirit Mars Rover:
Too many files allocated

22

Some Observations
Software applications for space missions have
grown from a few thousands of lines of code in the
late seventies to hundreds of thousands of lines of
code for today’s missions.
At the current rate, the code size for controlling
spacecraft doubles in size every four years.
Software should be expected to contain between

1 and 10 defects per 1,000 lines of code excluding
comments and blank lines.
We are talking about hundreds of errors on current
missions, and more to come.

23

Also Complexity grows

But, software is not just rapidly growing in size; it is
also rapidly growing in complexity. Virtually all current
missions use multi-threaded software designs:
running up to 50 threads executing concurrently and
requiring synchronization of potentially conflicting
tasks.

24

What can We Do?

prevent, detect, and control

25

What can We Do?

prevent, detect, and control

Solid formal designs
Safe programming languages

Test
Analysis Fault containment

26

Testing

Implemented
system

under test

Output
Observer

Input
Generator

Schedule
Generator

27

Runtime Verification

event stream
Implemented

system
under test

instrumentation
di

sp
at

ch

Observer

reports
Algo 1

Algo 2

Algo 3

input

Fault containment

28

What is An Event Stream?

while(true){
if(x>0)lock(L);
x = shared;
shared = f(x);
release(L);

}

29

What is An Event Stream?
while(true){
if(x>0){
lock(L);
logLock(t,L);

}
x = shared;

 logWr(‘x’,x);
shared = f(x);
logWr(‘shared’,shared);
release(L);
logRelease(t,L);

}

Trace:
x=5
shared=10
release(t2,L)
lock(t2,L)
x=12
shared=24
release(t2,L)
lock(t2,L)
x=24
shared=48
release(t2,L)
lock(t2,L)
x=50
shared=100
release(t2,L)
lock(t2,L)
x=100

execute monitor

Instrument program.
For example using
Aspect Oriented Programming

30

Runtime Verification
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races

31

Runtime Verification
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races

32

Requirement Monitoring
The Eagle Temporal Logic

Allows easy specification of
properties of an execution/log file:

Assertion properties:
“x is always positive”.
Future properties:
“a turn signal is followed by a turn
within 10 seconds”.
Past properties:
“When a turn occurs, a turn command
has been emitted before”.

33

Requirement Specification:
So many logics, notations,
languages …

General specification language suitable for
monitoring? Supports many styles:

• state machines
• temporal logic: ◊x>0 (eventually x>0)

future+past
• regular expressions: login+ use* logout
• real-time properties: ◊[10]x>0
• properties about data values over time:
□(login(x) -> ◊logout(x))

34

Eagle’s Core Concepts

Three temporal connectives:
• Next: @F
• Previous: #F

• Concatenation: F1;F2
Recursive parameterized rules over trace
Always(Term t) = t /\ @Always(t) .

@F#F
now

35

Basic LTL Combinators

// Future time combinators

max Always(Term t) = t /\ @ Always(t) .
min Eventually(Term t) = t \/ @ Eventually(t) .
min Until(Term t1,Term t2) =

t2 \/ (t1 /\ @ Until(t1,t2)) .

// Past time combinators

max Sofar(Term t) = t /\ # Sofar(t) .
min Previously(Term t) = t \/ # Previously(t) .
min Since(Term t1,Term t2) =

t2 \/ (t1 /\ # Since(t1,t2)) .

library

36

Example

start end start end

mon M1 = Always(start() -> Eventually(end())

mon M2 = Always(end() -> Previously(start())

Property:
Every start is followed by an end,
and vice versa.

37

Data Bindings

mon M = Always(x>0 -> Previously(y==x))

x>0y==x

mon M = Always(x>0 ->
let k=x in Previously(y==k))

mon M = Always(x>0 -> R(x))
min R(int k) = Previously(y==k))

k := xy==k

Property:
when x>0 then
y has had that value
In the past.

38

Real-Time is
Just Data

min WithinAbs(float t1, float t2, Term F) =
clock <= t2 /\
(F → t1 <= clock) /\
(~ F → @ EventuallyAt(t1, t2,F)) .

min Within(float t1, float t2, Term F) =
WithinAbs(t1+clock, t2+clock, F) .

start end start end

mon M = Always(start() => Within(1,4,end()))

[1 .. 4] [1 .. 4]

library

Property:
Every start is followed by an end
within 1 to 4 seconds.

39

Grammars

mon M = Match(lock(),release())

min Match (Term l, Term r) =
Empty() \/ (l;Match(l,r);r;Match(l,r))

Property:
Locks are acquired and released
nested.

lock lock release lock release release

lock lock lock lock lock lock release

40

State Machines
open

close
S1 S2 accessidle

max S1() = open -> @ S2()
/\ idle -> @ S1()

min S2() = close -> @ S1()
/\ access -> @ S2()

mon M = S1()

Property:
File accesses are always
enclosed by open and close
operations.

41

But Properties are
Hard to Formulate

To quote quite excellent NASA software
engineer when asked what properties his
system would have to satisfy:

“I have absolutely no idea what properties
this system should satisfy”.

42

K9 Planetary Rover Executive

Executive receives plans from
a planner for direct execution

Plan is a hierarchical structure
of actions

Multi-threaded system (35K
lines of C++)

Properties generated
automatically from input plans!

43

Example of Plan

(block :id plan
:continue-on-failure
:node-list (

(task :id drive1
:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1)

(task :id drive2
:end-condition (time +10 +16)
:action BaseMove2)

)
)

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail

44

Running X9

K9-Rover
Executive

plan & property
generation

event stream
EAGLE

engine

instrumentation Observer

plan
inputs

behavioural
properties

reports

With
Willem Visser and
Corina Pasareanu

45

Runtime Verification
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races

46

More Power – More Problems

Multi-threaded programs may execute differently from one run to
another due to the apparent randomness in the way threads are
scheduled.

Typically, testing cannot explore all schedules, so some bad
schedules may never be discovered.

47

Cyclic Deadlocks

A resource deadlock can occur when
two or more threads block each other
in a cycle while trying to access
synchronization locks (held by other
threads) needed to continue their
activities.

48

Cyclic Deadlocks

T1:

lock(R1);
...
lock(R2);
...

release(R2);
...
release(R1);

T2:

lock(R2);
...
lock(R1);
...
release(R1);
...
release(R2);

Deadlock: if T1 takes R1 and then T2 takes R2

49

Cycle Detection:
A Simple Algorithm

T1:

lock(R1);
...
lock(R2);
...

release(R2);
...
release(R1);

T2:

lock(R2);
...
lock(R1);
...
release(R1);
...
release(R2);

Deadlock: if T1 takes R1 and then T2 takes R2

R1 R2

50

A Miracle?

Deadlock potential detected even though
a deadlock did not occur in that run
Reason: we are checking a
stronger property:
• Weaker property: deadlock freedom
• Stronger property: cycle freedom

51

Simple Algorithm Gives
False Negatives

T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

4 deadlock potentials
Only one is real

T2:

sync(G){
sync(L2){
sync(L1){}

}
}

T3:

sync(L1){
sync(L2){}

}

Guarded cycle

Thread segmented cycle

Singular cycle

Deadlock cycle!

52

Execution Trace

T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){
sync(L1){}

}
}

T3:

sync(L1){
sync(L2){}

}

l(T1,G)
l(T1,L1)
l(T1,L2)
u(T1,L2)
u(T1,L1)
s(T1,T3)
l(T2,G)
l(T2,L2)
l(T2,L1)
u(T2,L1)
u(T2,L2)
u(T2,G)
l(T3,L1)
l(T3,L2)
u(T3,L2)
u(T3,L1)
j(T1,T3)
l(T1,L2)
l(T1,L1)
u(T1,L1)
u(T1,L2)

Trace

Event format:

l(<thread>,<lock>) - lock
u(<thread>,<lock>) - unlock
s(<thread>,<thread>) - start
j(<thread>,<thread>) - join

53

Full Algorithm

T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){
sync(L1){}

}
}

T3:

sync(L1){
sync(L2){}

}

L1 L2

T3,{},(6,6)

T1,{G},(2,2)

T1,{},(7,7)

T2,{G},(4,4)

M:
new T1().start();
new T2().start();

0 3

4

7

6

5

1

2

M

T1

T2

T3

1. Threads: must differ
2. Guard sets: must not overlap
3. Segments: must be parallel

Valid Cycles:

One potential left, the real deadlock!

54

Static Code Analysis Fails
On Some Examples

class Main{
Fork[] forks = new Fork[N];
..
for(int i=0;i<N;i++){

new Phisosopher(forks[i],
forks[(i+1)%N];

};
}

Static analysis cannot find this problem due to the dynamic
creation of forks and the ‘%’ operator (experiment with JLint).

Model checking works for N=20, but if program is deadlock free
(introducing gate lock) N=3 is max using 3 minutes (JPF).

55

Runtime Verification
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races

56

Data Races

Standard definition:

A data race occurs when two concurrent
threads access a shared variable and when
at least one access is a write, and the
threads use no explicit mechanism to
prevent the accesses from being
simultaneous.

57

Low-Level Data Races

The standard way to avoid low-level data races on a variable
is to protect the variable with a lock: all accessing threads
must acquire this lock before accessing the variable, and
release it again after.

There exist several algorithms for analyzing multi-threaded
programs for low-level data races.

We will mention the Eraser algorithm here (Savage et al 97).

58

The Eraser Core Algorithm

T1:

synchronized(R1){
sum = sum + 100;

}

T2:

synchronized(R2){
sum = sum + 50;

}

Initially: Lockset = {}

T1 executes: Lockset = {R1}

T2 executes: Lockset = Lockset ∩ {R2} = { }

Note: R1 and R2 are different locks!

59

Full Algorithm Reduces
False Positive

not used

exclusive

shared

shared
modified

wr

rd (new thread)

rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action
= refinement
= also warnings

Associate state machine with each
monitored variable in addition to
The lock set.

60

Runtime Verification
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races

61

Data Race

void swap() {
lx = c.x;
ly = c.y;
c.x = ly;
c.y = lx;

}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}
Pair of coordinates x and y.

Two threads.
Problem: thread order non-deterministic.
Data corruption possible!

Lock protection needed.

62

Repairing the Situation:
Protecting x and y in swap

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}

All field accesses synchronized: Eraser reports no errors.
No classical data race for these threads, but clearly undesired behavior!
Problem: swap may run while reset is in progress!

5,8

0,8

8,0
8,0

Result is neither a swap or a reset

63

The Problem

The reset method releases its lock in
between setting x and then setting y.
This gives the swap method the chance
to interleave the two partial resets.
The swap method “has it right”: it holds
its lock during operation on x and y.

64

The Solution

This difference in views can be detected
dynamically.
Essentially, this approach tries to infer
what the developer intended when
writing the multi-threaded code, by
discovering view inconsistencies.
Depends on at least one thread getting it
right.

65

The Algorithm
1) For each thread, for each lock, identify all fields covered by
that lock (views).

2) For each thread, find the views that have no other view
that contains them (maximal views).

3) For each pair of threads t1 and t2: find the intersection
between t1’s maximal view and the views of t2.

4) Verify that those intersections form a chain. That is:
s1 ⊆ s2 ⊆ s3 ⊆ …

66

Low-Level versus
High-Level Data races

x

L1 L2 L2

xx y
y

Low-Level High-Level
For each variable: a lock set For each lock: a variable set (several)

y

L3
L1

L1 L2

67

Applying Algorithm
to Example

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}

x yx , y
{x} ⊆ {y}

{y} ⊆ {x}

Overlaps are:
{x} and {y}.

maximal of swap

68

Real-Life Example:
HL Data Race
in Remote Agent

If(& not ok())
issueWarning()

update()

set()

Task

Database

Flag
Monitor

69

Neither Sound
Nor Complete

False positive when one thread uses coarser locking that
required due to efficiency.

False negatives when:
All threads use the same

locking
Random execution trace does

not expose problem

L x y L

x

y

L

x

y
L

x

y

L
x

y

70

If not complete and sound,
then what’s the deal?

Much higher chance of detecting an error than if
one relies on actually executing the particular
interleaving that leads to an error, without requiring
much computational resources.

71

Runtime Verification
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races

72

Recall The
High Level Data Race

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}

Problem: swap may run while reset is in progress!

73

Repairing the Situation:
Making reset Atomic

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
c.y = 0;

}
}

5,8

0,05,8

8,5
Problem:
- reset may run while swap is in progress!
- swap then continues operating on outdated values

Reset invoked after swap, but has no effect

74

The Problem:
Data Flow Across
Synchronized Blocks

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

!definedlyand lx
store values locally

!usedlyand lx
may be outdated

Shared data “escape” beyond first synchronized block!

Algorithm checks whether shared data escape synchronized blocks.

75

Algorithm

Enumerate synchronized blocks.
Mark values as shared or unshared.
Mark local variables with
• the identity of synchronization block where defined.
• Whether they contain a shared variable.

For each use of a local variable, check:
block where used = block where defined.

76

Determining Sharedness

If instruction creates stack elements
(getfield, method call)

• if inside a synchronized block: stack
elements generated are marked as shared

• else: stack elements generated are marked
as local

77

Determining Sharedness
of Return Values of Methods

synchronized(this){
lx = c.getX();

}

Method call inside synchronization:
return value is shared

Method call outside synchronization:
callee uses synchronization:
return value is shared

Method call outside synchronization:
no synchronization in callee:
return value is local

synchronized int getX() {
return x;

}
lx = c.getX();

int getX() {
return x;

}
lx = c.getX();

78

Workshop

Fifth International Workshop on

Runtime Verification

July 12, 2005
Edinburgh
Scotland

RV’05
http://react.cs.uni-sb.de/rv2005

