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Where am I Sitting?
NASA
• JPL, California, Los Angeles: unmanned deep space
• Houston, Texas: manned missions
• Kennedy, Florida: launches
• ….
• NASA Ames, California, Mountain View:

Computer Science:
• Computational Sciences Division: 300-400 researchers

• Automated Software Engineering Group
• Verification and Testing: 10 people
• Program Synthesis: 10 people

• Planning and Scheduling
• …

• Super computing
• …
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NASA Increasingly
Relies on Software

Systems must support remote 
exploration
Systems must be more autonomous
Systems must do more complex tasks

When people think of space, they think of rocket 
plumes and the Space Shuttle, but the future of 
space is information technology…

Daniel S. Goldin, 
Previous NASA Administrator

Not only HW
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We get excited 
when it goes well
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However, 
errors sometimes occur
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Ariane 5, 1996 - Lost
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Ariane: 
Float to Integer conversion

Data conversion of a too large number. 64 bit floating point 
number relating to the horizontal velocity of the rocket with 
respect to the platform was converted to a 16 bit signed 
integer. Number was larger than 65,536.
Due to higher horizontal velocity than in Ariane 4.



10

Mars PathFinder, 1997
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Mars PathFinder:
Priority Inversion Problem

Bus Manager

Meteorological
Data gathering 

task

High Priority

Low Priority

Medium Priority

Some task

1

2
3

waiting
daemon reset
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Mars Climate Orbiter, 1999
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Mars Climate Orbiter:
Unit error

214

Pounds, inches, …

Kilos, centimeters

“We had planned to approach 
the planet at an altitude of 
about 150 kilometers (93 
miles). We thought we were 
doing that, but upon review of 
the last six to eight hours of 
data leading up to arrival, we 
saw indications that the actual 
approach altitude had been 
much lower. It appears that the 
actual altitude was about 60 
kilometers (37 miles)”.
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Deep Space 1, 1999
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Deep-Space 1

while(true){
action();
if(!newEvents())

wait();
handleEvents();

}

New event
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Deep-Space1:
We found error before flight 

Using the SPIN model checker
In spacecraft operating system
Code was corrected, but error later re-
introduced in a different sub-system
Error was located after 5 hours
Was not fixed since modifying code could 
cause new errors, and …
it was not likely to re-occur
Shows how hard these errors are to find.
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Mars Polar Lander, 1999
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Mars Polar Lander:
Landing Sensor 
activated too early

Normally, the shake of a touch down would 
signal that engines should be shut down.
However, shake of legs opening could cause 
the same effect in some cases. It was known.
System was designed to ignore such shakes 
above 40 feet where legs were to open.
System above 40 feet correctly ignored 
landed-flag, but flag was not reset to false, and 
triggered engine shut-off as soon as 40 feet 
were reached.
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Mars Polar Lander:
Imagined Scenario

2  

1  

8  7  

6  

3  

5  4  

sensor
legs
engine

high

medium

low

landed

40 feet ~
13 meters
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Spirit Mars Rover, 2004
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Spirit Mars Rover:
Too many files allocated
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Some Observations
Software applications for space missions have 
grown from a few thousands of lines of code in the 
late seventies to hundreds of thousands of lines of 
code for today’s missions.
At the current rate, the code size for controlling 
spacecraft doubles in size every four years.
Software should be expected to contain between 

1 and 10 defects per 1,000 lines of code excluding 
comments and blank lines.
We are talking about hundreds of errors on current 
missions, and more to come.
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Also Complexity grows

But, software is not just rapidly growing in size; it is
also rapidly growing in complexity. Virtually all current 
missions use multi-threaded software designs: 
running up to 50 threads executing concurrently and
requiring synchronization of potentially conflicting 
tasks.
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What can We Do?

prevent, detect, and control
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What can We Do?

prevent, detect, and control

Solid formal designs
Safe programming languages

Test
Analysis Fault containment 
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Testing

Implemented
system

under test

Output
Observer

Input
Generator

Schedule
Generator
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Runtime Verification

event stream
Implemented

system
under test

instrumentation
di

sp
at

ch

Observer

reports
Algo 1

Algo 2

Algo 3

input

Fault containment
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What is An Event Stream?

while(true){
if(x>0)lock(L);
x = shared;
shared = f(x);
release(L);

}
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What is An Event Stream?
while(true){
if(x>0){
lock(L);
logLock(t,L);

}
x = shared;

  logWr(‘x’,x);
shared = f(x);
logWr(‘shared’,shared);
release(L);
logRelease(t,L);

}

Trace:
x=5
shared=10
release(t2,L)
lock(t2,L)
x=12
shared=24
release(t2,L)
lock(t2,L)
x=24
shared=48
release(t2,L)
lock(t2,L)
x=50
shared=100
release(t2,L)
lock(t2,L)
x=100

execute monitor

Instrument program.
For example using
Aspect Oriented Programming



30

Runtime Verification 
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races
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Runtime Verification 
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Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
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• High level data races
• Data flow races
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Requirement Monitoring
The Eagle Temporal Logic

Allows easy specification of
properties of an execution/log file:

Assertion properties: 
“x is always positive”.
Future properties: 
“a turn signal is followed by a turn 
within 10 seconds”.
Past properties:
“When a turn occurs, a turn command
has been emitted before”.
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Requirement Specification:
So many logics, notations, 
languages …

General specification language suitable for 
monitoring? Supports many styles: 

• state machines 
• temporal logic: ◊x>0 (eventually x>0) 

future+past
• regular expressions: login+ use* logout
• real-time properties: ◊[10]x>0
• properties about data values over time:
□(login(x) -> ◊logout(x))
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Eagle’s Core Concepts

Three temporal connectives: 
• Next:                  @F
• Previous: #F

• Concatenation: F1;F2
Recursive parameterized rules over trace 
Always(Term t) = t /\ @Always(t) .

@F#F
now
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Basic LTL Combinators

// Future time combinators

max Always(Term t) = t /\ @ Always(t) .
min Eventually(Term t) = t \/ @ Eventually(t) .
min Until(Term t1,Term t2) = 

t2 \/ (t1 /\ @ Until(t1,t2)) .

// Past time combinators

max Sofar(Term t) = t /\ # Sofar(t) .
min Previously(Term t) = t \/ # Previously(t) .
min Since(Term t1,Term t2) = 

t2 \/ (t1 /\ # Since(t1,t2)) .

library
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Example

start end start end

mon M1 = Always(start() -> Eventually(end())

mon M2 = Always(end() -> Previously(start())

Property:
Every start is followed by an end,
and vice versa.
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Data Bindings

mon M = Always(x>0 -> Previously(y==x))

x>0y==x

mon M = Always(x>0 -> 
let k=x in Previously(y==k))

mon M = Always(x>0 -> R(x)) 
min R(int k) = Previously(y==k))

k := xy==k

Property:
when x>0 then 
y has had that value
In the past.
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Real-Time is
Just Data

min WithinAbs(float t1, float t2, Term F) = 
clock <= t2 /\
(F → t1 <= clock)  /\
( ~ F → @ EventuallyAt(t1, t2,F)) .

min Within(float t1, float t2, Term F)  = 
WithinAbs(t1+clock, t2+clock, F) .

start end start end

mon M = Always(start() => Within(1,4,end())) 

[1 .. 4] [1 .. 4]

library

Property:
Every start is followed by an end
within 1 to 4 seconds.
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Grammars

mon M = Match(lock(),release()) 

min Match (Term l, Term r) =
Empty() \/ (l;Match(l,r);r;Match(l,r)) 

Property:
Locks are acquired and released 
nested.

lock lock release lock release release

lock lock lock lock lock lock release
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State Machines
open

close
S1 S2 accessidle

max S1() = open -> @ S2()
/\ idle -> @ S1()

min S2() = close  -> @ S1()
/\ access -> @ S2()

mon M = S1()

Property:
File accesses are always 
enclosed by open and close 
operations.
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But Properties are 
Hard to Formulate

To quote quite excellent NASA software 
engineer when asked what properties his
system would have to satisfy: 

“I have absolutely no idea what properties
this system  should satisfy”. 
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K9 Planetary Rover Executive

Executive receives plans from 
a planner for direct execution

Plan is a hierarchical structure 
of actions

Multi-threaded system (35K 
lines of C++)

Properties generated 
automatically from input plans!
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Example of Plan

(block :id plan
:continue-on-failure
:node-list (

(task :id drive1
:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1)

(task :id drive2
:end-condition (time +10 +16)
:action BaseMove2)

) 
)

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail
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Running X9 

K9-Rover
Executive

plan & property
generation

event stream
EAGLE

engine

instrumentation Observer

plan
inputs

behavioural
properties

reports

With 
Willem Visser and
Corina Pasareanu
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Runtime Verification 
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races
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More Power – More Problems

Multi-threaded programs may execute differently from one run to 
another due to the apparent randomness in the way threads are 
scheduled.

Typically, testing cannot explore all schedules, so some bad 
schedules may never be discovered.
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Cyclic Deadlocks

A resource deadlock can occur when 
two or more threads block each other 
in a cycle while trying to access 
synchronization locks (held by other 
threads) needed to continue their 
activities.
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Cyclic Deadlocks

T1:

lock(R1);
...
lock(R2);
...

release(R2);
...
release(R1);

T2:

lock(R2);
...
lock(R1);
...
release(R1);
...
release(R2);

Deadlock: if T1 takes R1 and then T2 takes R2
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Cycle Detection: 
A Simple Algorithm

T1:

lock(R1);
...
lock(R2);
...

release(R2);
...
release(R1);

T2:

lock(R2);
...
lock(R1);
...
release(R1);
...
release(R2);

Deadlock: if T1 takes R1 and then T2 takes R2

R1 R2
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A Miracle?

Deadlock potential detected even though 
a deadlock did not occur in that run
Reason: we are checking a 
stronger property:
• Weaker property: deadlock freedom
• Stronger property: cycle freedom
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Simple Algorithm Gives 
False Negatives

T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

4 deadlock potentials
Only one is real

T2:

sync(G){
sync(L2){
sync(L1){}

}
}

T3:

sync(L1){
sync(L2){}

}

Guarded cycle

Thread segmented cycle

Singular cycle

Deadlock cycle!
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Execution Trace

T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){
sync(L1){}

}
}

T3:

sync(L1){
sync(L2){}

}

l(T1,G)
l(T1,L1)
l(T1,L2)
u(T1,L2)
u(T1,L1)
s(T1,T3)
l(T2,G)
l(T2,L2)
l(T2,L1)
u(T2,L1)
u(T2,L2)
u(T2,G)
l(T3,L1)
l(T3,L2)
u(T3,L2)
u(T3,L1)
j(T1,T3)
l(T1,L2)
l(T1,L1)
u(T1,L1)
u(T1,L2)

Trace

Event format:

l(<thread>,<lock>) - lock
u(<thread>,<lock>) - unlock
s(<thread>,<thread>) - start
j(<thread>,<thread>) - join
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Full Algorithm

T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){
sync(L1){}

}
}

T3:

sync(L1){
sync(L2){}

}

L1 L2

T3,{},(6,6)

T1,{G},(2,2)

T1,{},(7,7)

T2,{G},(4,4)

M:
new T1().start();
new T2().start();

0 3

4

7

6

5

1

2

M

T1

T2

T3

1. Threads: must differ
2. Guard sets: must not overlap
3. Segments: must be parallel

Valid Cycles:

One potential left, the real deadlock!
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Static Code Analysis Fails
On Some Examples

class Main{
Fork[] forks = new Fork[N];
..
for(int i=0;i<N;i++){

new Phisosopher(forks[i],
forks[(i+1)%N];

};
}

Static analysis cannot find this problem due to the dynamic 
creation of forks and the ‘%’ operator (experiment with JLint).

Model checking works for N=20, but if program is deadlock free
(introducing gate lock) N=3 is max using 3 minutes (JPF).
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Runtime Verification 
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races
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Data Races

Standard definition:

A data race occurs when two concurrent 
threads access a shared variable and when 
at least one access is a write, and the 
threads use no explicit mechanism to 
prevent the accesses from being 
simultaneous.
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Low-Level Data Races

The standard way to avoid low-level data races on a variable 
is to protect the variable with a lock: all accessing threads 
must acquire this lock before accessing the variable, and 
release it again after.

There exist several algorithms for analyzing multi-threaded 
programs for low-level data races.

We will mention the Eraser algorithm here (Savage et al 97).
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The Eraser Core Algorithm

T1:

synchronized(R1){
sum = sum + 100;

}

T2:

synchronized(R2){
sum = sum + 50;

}

Initially: Lockset = {}

T1 executes: Lockset = {R1}

T2 executes: Lockset = Lockset ∩ {R2} = { }

Note: R1 and R2 are different locks!
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Full Algorithm Reduces
False Positive

not used

exclusive

shared

shared
modified

wr

rd (new thread)

rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action
= refinement
= also warnings

Associate state machine with each
monitored variable in addition to
The lock set.
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Runtime Verification 
Algorithms

Requirement monitoring
• The Eagle Temporal logic

Concurrency Analysis
• Deadlock analysis
• Data race analysis

• Low level data races
• High level data races
• Data flow races
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Data Race

void swap() {
lx = c.x;
ly = c.y;
c.x = ly;
c.y = lx;

}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}
Pair of coordinates x and y.

Two threads.
Problem: thread order non-deterministic. 
Data corruption possible!

Lock protection needed.
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Repairing the Situation:
Protecting x and y in swap

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}

All field accesses synchronized: Eraser reports no errors.
No classical data race for these threads, but clearly undesired behavior!
Problem: swap may run while reset is in progress!

5,8

0,8

8,0
8,0

Result is neither a swap or a reset



63

The Problem

The reset method releases its lock in 
between setting x and then setting y.
This gives the swap method the chance 
to interleave the two partial resets.
The swap method “has it right”: it holds 
its lock during operation on x and y.
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The Solution

This difference in views can be detected 
dynamically.
Essentially, this approach tries to infer 
what the developer intended when 
writing the multi-threaded code, by 
discovering view inconsistencies.
Depends on at least one thread getting it 
right.
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The Algorithm
1) For each thread, for each lock, identify all fields covered by 
that lock (views).

2) For each thread, find the views that have no other view 
that contains them (maximal views).

3) For each pair of threads t1 and t2: find the intersection 
between t1’s maximal view and the views of t2.

4) Verify that those intersections form a chain. That is:
s1 ⊆ s2 ⊆ s3 ⊆ …
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Low-Level versus 
High-Level Data races

x

L1 L2 L2

xx y
y

Low-Level High-Level
For each variable: a lock set For each lock: a variable set (several)

y

L3
L1

L1 L2
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Applying Algorithm 
to Example

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}

x yx , y
{x} ⊆ {y}

{y} ⊆ {x}

Overlaps are:
{x} and {y}.

maximal of swap
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Real-Life Example:
HL Data Race 
in Remote Agent

If(           & not ok(      ))
issueWarning()

update(       )

set(        )

Task

Database

Flag
Monitor
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Neither Sound  
Nor Complete

False positive when one thread uses coarser locking that 
required due to efficiency.

False negatives when:
All threads use the same 

locking
Random execution trace does 

not expose problem

L x y L

x

y

L

x

y
L

x

y

L
x

y



70

If not complete and sound,
then what’s the deal?

Much higher chance of detecting an error than if
one relies on actually executing the particular 
interleaving that leads to an error, without requiring
much computational resources.
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Recall The 
High Level Data Race

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
}
synchronized(this){

c.y = 0;
}

}

Problem: swap may run while reset is in progress!
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Repairing the Situation:
Making reset Atomic

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

void reset() {
synchronized(this){

c.x = 0;
c.y = 0;

}
}

5,8

0,05,8

8,5
Problem: 
- reset may run while swap is in progress!
- swap then continues operating on outdated values

Reset invoked after swap, but has no effect
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The Problem:
Data Flow Across 
Synchronized Blocks

void swap() {
synchronized(this){

lx = c.x;
ly = c.y;

}
synchronized(this){

c.x = ly;
c.y = lx;

}
}

!definedlyand lx
store values locally

!usedlyand lx
may be outdated

Shared data “escape” beyond first synchronized block!

Algorithm checks whether shared data escape synchronized blocks.



75

Algorithm

Enumerate synchronized blocks.
Mark values as shared or unshared.
Mark local variables with 
• the identity of synchronization block where defined.
• Whether they contain a shared variable.

For each use of a local variable, check:
block where used = block where defined.
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Determining Sharedness

If instruction creates stack elements
(getfield, method call)

• if inside a synchronized block: stack 
elements generated are marked as shared

• else: stack elements generated are marked 
as local
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Determining Sharedness
of Return Values of Methods

synchronized(this){
lx = c.getX();

}

Method call inside synchronization:
return value is shared

Method call outside synchronization:
callee uses synchronization:
return value is shared

Method call outside synchronization:
no synchronization in callee:
return value is local

synchronized int getX() {
return x;

}
lx = c.getX();

int getX() {
return x;

}
lx = c.getX();
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Fifth International Workshop on
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